1	Seismic bulk and shear attenuation along a transect from Kama'ehuakanaloa volcano
2	through Mauna Loa to the Aloha Cabled Observatory:
3	Implications for the distribution of partial melt
4	
5	Rhett Butler ¹
6	¹ Hawai'i Institute for Geophysics and Planetology, School of Ocean and Earth Science and
7	Technology, University of Hawaiʻi at Mānoa, 1680 East-West Road, POST 602, Honolulu, HI
8	96822.
9	
10	HIGP Technical Report 2494, June, 2024, pp54. <u>https://doi.org/10.21203/rs.3.rs-4548134/v1</u>
11	
12	ORCiD 0000-0002-1796-2797
13	
14	
15	
16	Key points
17	• Bulk attenuation exceeds shear attenuation for all Hawai'i earthquakes observed
18	• A thermodynamic equilibrium model of partial melt effectively fits a bulk
19	attenuation data set for Mauna Loa and Kama'ehuakanaloa volcanos
20	• Aloha Cabled Observatory successfully recorded all Q_K and Q_S data from Mauna
21	Loa and Kama'ehuakanaloa volcanos using a single hydrophone
22	
23	

24 ABSTRACT

Bulk (Q_K) and shear (Q_S) attenuation are measured and modeled to ~50 km depth 25 beneath Hawai'i. High-frequency (>50 Hz) earthquakes are routinely observed from the 26 27 Aloha Cabled Observatory (ACO) along the azimuth to Mauna Loa, Pāhala, and Kama'ehuakanaloa volcano. Bulk attenuation is consistently larger than shear 28 attenuation beneath Hawai'i at frequencies >2 Hz. The Mauna Loa Summit shows the 29 30 smallest Q values, and transects approaching the Summit from the southeast differ 31 asymmetrically with those departing to the northwest from the Summit. Transect maps of Q are created from the measurements to present in plan view the distribution of Q_K 32 and Q_S near the moho. Activation energy E^* models of Q_S are tested both at Pāhala and 33 34 Kama'ehuakanaloa for experimentally determined olivine E^* using the temperature 35 derived from a Hawai'i Hotspot geotherm and pressure. The Q_K arising from water-36 filled pores in vesicular basalts within the shallow oceanic crust are a hypothesized 37 mechanism for bulk attenuation measured in the shallow crust near ACO and Wake Island. Below the shallow oceanic crust, partial melt presents a feasible bulk 38 39 attenuation mechanism at volcanos. Fitting a thermodynamic equilibrium model for 40 frequencies >1 Hz to the Q_K measurements shows a very good match to the Q_K data, 41 predicting partial melt fractions of 0.1% to 10%. Translating the Q maps into partial 42 melt regions near Mauna Loa, Pāhala, and Kama'ehuakanaloa volcano gives a first view 43 of the observation, location, and distribution of partial melt along the ~ 100 km transect from southeast to northwest of Mauna Loa. 44

46 Plain Language Summary

47 Attenuation of seismic energy in Hawai'i has two separate mechanisms: bulk compression/decompression and shearing the rock. These attenuation properties are 48 49 measured from earthquakes along a line from the Aloha Cabled Observatory (ACO) to 50 Mauna Loa, and southeast to Pāhala, and Kama'ehuakanaloa volcano. These 51 earthquakes occur down to ~50 km depth, and are rich in high frequency energy. Bulk 52 attenuation is uniformly larger than shear attenuation in Hawai'i. The Mauna Loa 53 Summit shows the largest attenuation observed. Traversing the Summit from the 54 southeast, attenuation is not symmetrical with paths traversing to the northwest from the Summit. For shallow and deep earthquakes, experimentally determined olivine 55 mineral properties compare successfully with observed shear attenuation measurements. 56 57 Partial melting of rock at a boundary in contact with magma presents a feasible bulk 58 attenuation mechanism at volcanos. Fitting a partial melting model to the bulk 59 attenuation measurements shows a very good match to the data, predicting partial melt 60 fractions of ~1% volume. Translating the bulk attenuation maps into partial melt regions near Mauna Loa gives a first view of the location and distribution of partial 61 62 melt along the ~ 100 km traverse from southeast to northwest of Mauna Loa. 63

64 Index terms [3050, 5144, 7280, 3619, 3909]

65 Keywords [bulk attenuation Mauna Loa partial melt]

67 1 INTRODUCTION

68 This study was first motivated by the swarm of 50 M_w 5+ earthquakes which occurred during 69 the collapse of the Kīlauea caldera in 2018 (e.g., Butler 2019, Neal et al., 2019). Stacking the 70 Kīlauea data at seismic stations situated along the azimuth to the Aloha Cabled Observatory 71 (ACO), Butler (2020) derived effective $Q(Q_{eff})$ of bulk and shear attenuation for the paths beneath the volcanos and within the oceanic crust (Figure 1). In addition to the frequency 72 73 dependent effective Q_{eff} values, shear attenuation activation energy, E^* , for the shallow basaltic crust was derived. Except for the nearest Kīlauea site, where $Q_S \sim Q_K$ at < 10 Hz, the measured 74 $Q_S > Q_K$ for the Kīlauea data, and a mechanism for the observed bulk attenuation was 75 hypothesized. This paper and its predecessor further serve to acknowledge and highlight the 76 77 remarkable scientific capabilities of cabled seafloor observatories, even when employing only a 78 single high-frequency seafloor hydrophone. 79 A swarm of 16 M_L \gtrsim 4 deep earthquakes (>30 km) in 2020–2023 near Pāhala on the 80 southeast coast of Hawai'i Island were reported by the U.S. Geological Survey - Hawaiian 81 Volcano Observatory (USGS-HVO). These earthquakes offered a similar geometric arrangement 82 transecting Mauna Loa to that of the Butler (2020) Kīlauea study. Earthquake spectrograms were 83 reviewed for the Pāhala events, and other earthquakes along the azimuths between ACO and 84 Mauna Loa, Pāhala, & Kama'ehuakanaloa (Figure A1).

85 The narrow study corridor is presented in Figure 1 [Left] extending from ACO to Mauna Loa,

86 Kama'ehuakanaloa, and Pāhala, and from ACO to Kīlauea. Figure 1 [Right] shows the epicentral

- 87 locations of earthquake in the data set. The mean, very shallow, hypocentral depths for the
- Kīlauea and Mauna Loa caldron earthquakes are 0.3 and -0.2 km, respectively, and hence
- 89 broadly analogous. The paths have comparable propagation distances and azimuths to ACO, and

90 the propagation paths merge together approaching ACO. As the propagation path from the 91 Pāhala events transited the crust and below the moho beneath the caldera of Mauna Loa, the swarm affords a comparison of attenuation from the 2018 Kilauea data. Fortuitously, the azimuth 92 93 between ACO and Pahala lay within 1° of the azimuth to Kama'ehuakanaloa volcano (formerly, 94 Lō'ihi). The Kama'ehuakanaloa earthquakes (at depths near 11 km and at 46 km) also exhibited 95 high frequency, deep S-waves ~55 Hz (Figure A1). 96 In Figure 2 [Left], I present the initial measurements and comparison of Q_K and Q_S for Mauna 97 Loa and Kīlauea calderas, following the methodology of Butler (2020). For both volcanos, $Q_S >$ Q_K , i.e., bulk attenuation exceeds that for shear attenuation. Moreover, along the path to ACO, 98 99 the Mauna Loa paths are more attenuating than observed for Kīlauea. The higher frequency 100 content of the Kīlauea Q as compared to Mauna Loa may be attributed to larger earthquake 101 sources in the Kīlauea caldera (Kīlauea Mw ~ 5.3 and Mauna Loa M_L ~ 4.2) and lower signal-to-102 noise (SNR). The effective Q measured at ACO from earthquakes southeast of Mauna Loa and 103 transiting the summit is plotted from both shallow and deep events (Figure 2 [Right]), see 104 caption). 105 Within the MaunaLoa – Kama'ehuakanaloa volcano edifices I use the multiple earthquakes to 106 separate and identify Q_K and Q_S as a function of frequency for subdivided pathways extending 107 from Mauna Loa–Pāhala–Kama'ehuakanaloa to ACO. Since Q_S is an exponentially activated 108 process, I confirm that the mapping of experimentally derived activation energies E^* for olivine 109 using a Hawai'i Hotspot geotherm (Lee et al., 2009) and pressure (PREM, Dziewonski and 110 Anderson, 1981) can appropriately match the change in O_S between shallow and deep

111 earthquakes both for Pāhala and Kama'ehuakanaloa.

112	For Q_K I review physical mechanisms for bulk attenuation (considered in Butler, 1987, 2020)
113	based upon a hypothesis that Q_K viewed near Wake Island and Kīlauea may arise in the oceanic
114	crust due to water filled vesicles in basalt. The observation of significant Q_K where the basalt
115	characteristics are not applicable (e.g., gabbroic basal crust, or olivine below moho) are now
116	considered in the context of partial melting beneath the Mauna Loa region. To model the
117	observed characteristics of $Q_K(f)$, I have employed a thermodynamic equilibrium model of
118	partial melt (Lyakhovsky et al., 2021) to map the $Q_K(f)$ values for a medium characterized with
119	spherical mineral cells (r = 0.5 to 50 mm) each hosting a partial melt fractional (0.1% to 10%)
120	inclusion. By application of the Lyakhovsky et al., (2021) model, I can expand our map of Q_K in
121	the vicinity of Maua Loa into a map of the distribution of partial melt at depths near the moho
122	and deeper near Mauna Loa. Comparing the relocated seismicity of Matoza et al. (2020) and
123	"deep learning" approach of (Wilding et al, 2022) with bulk attenuation transects, I hypothesize
124	that a low-seismicity gap (15–30 km depth) near Pāhala may be associated with observed Q_K due
125	to partial melt.

127 2 EARTHQUAKE DATASET

I selected earthquakes with $M_L \gtrsim 4$ observed at the ACO between 2011 and 2023 with propagation paths transiting beneath Mauna Loa volcano. These 30 primary events (Table A1) were located along the ACO back azimuth (~145°) including the offshore Kama'ehuakanaloa volcano and a deep earthquake swarm near Pāhala on the southeast coast of Hawai'i. Locations of events subsequent to the ACO start date were taken from earthquake relocations (2011–2018, Matoza et al., 2020), and from the Hawaiian Volcano Observatory network thereafter. Five deep secondary offshore events (back azimuths $143^\circ-148^\circ$) were also reviewed in the Appendix as a

135	framework to assess unusual earthquake characteristics within the primary event pool.
136	Earthquakes were classified as 'shallow' (<12 km) and 'deep' (>30 km) based upon depth. The
137	map of events is shown in Figure 1.
138	The ACO hydrophone data are down sampled from its native 96 KHz to 400 Hz, which
139	captures the full fidelity of the earthquakes. The ACO hydrophone sensor has been calibrated to
140	a Paroscientific nano-resolution Digiquartz [®] pressure gauge in the overlapping frequency band
141	1–10 Hz. The hydrophone pressure data are converted into far-field displacement, $u(x, t)$, from
142	which the amplitude spectrum $A(f)$ is derived. P- and S-wave arrival times are hand-picked and
143	analyzed within the 6.3 sec window between the wave arrival and its first multiple reflection,
144	<i>PwP</i> , characteristic of the ACO sensor at 4728 m depth. The spectral analysis of the <i>P</i> and <i>S</i>
145	windows employed the multitaper method (Park et al, 1987).

147 **2.1 Earthquake sources**

148 I follow the methodology of Butler (2018, 2020) and many prior earthquake source studies 149 (e.g., Aki, 1967; Brune, 1970, Madariaga, 1976, 1977; Shearer et al. 2006, Kaneko & Shearer, 150 2014, 2015) and Hawai'i attenuation studies (e.g., Scherbaum & Wyss 1990; Hansen et al. 2004; 151 Lin et al. 2015) for estimating Q_{eff} from the offset of the observed spectral slope of the earthquake source from its theoretical, angular frequency fall-off rate, ω^{-2} . The earthquake 152 153 sources were each carefully examined to ensure conformity with the assumptions of the ω^{-2} (or f^{-2}) source model in the frequency band of the Q_{eff} measurement beyond a measured corner 154 155 frequency, f_c . No presumption was made regarding the frequency dependence of Q. Figure A2 156 presents the methodology for measuring Q from the spectral data. Nonconforming sources were 157 observed for a several deep (> 30 km) earthquakes—these are considered in Figures A2 & A3.

- For earthquakes north of Moloka'i observed from ACO (Butler 2018), a low-frequency spectral decay rate of ω^{-2} is observed that steepens to ω^{-4} beyond 50 Hz. Observations of the same are noted in Figure A2.
- 161 The earthquake spectrum u(f) is modeled following Kaneko and Shearer (2014)

$$u(f) = \frac{\Omega_0}{1 + (f/f_c)^2}$$
(1)

where Ω_0 is the long-period spectral amplitude proportional to seismic moment, M₀, and the spectral fall-off of the source is proportional to f^{-2} . Ω_0 includes frequency independent effects such as geometric spreading, source radiation, and site impedance. The amplitude spectrum is modeled as the product of the source with the effective attenuation,

$$A(x,f) = u(f) e^{\frac{-\pi f x}{Qv}}$$
(2)

166 Solving for $Q(f > f_c)$,

$$Q(f) = \frac{\pi f x}{\nu \left[\log u(f) - \log A(f)\right]}$$
(3)

167 where x is distance in km and v is the wave velocity, km/s.

Whereas the 2018 Kīlauea earthquake swarm was comprised by nearly identical mechanisms at very shallow depths (<1.4 km), this study is comprised by earthquakes of varying magnitude (3.9–5.3) and depth. Kaneko and Shearer (2015) noted in earthquake source simulations of potentially significant variations in apparent slope and corner frequency as a function of rupture velocity, azimuth, and colatitude from the fault surface.

3 ATTENUATION METHODOLIGY 173

174

Attenuation quality factors, Q_P and Q_S , are determined respectively from the P and S wave data. $Q = (E, \text{ energy of seismic wave}) \div (\Delta E, \text{ energy lost during one cycle of wave}) = 2\pi E/\Delta E.$ 175 176 Shear waves attenuate due to a complex shear modulus, μ , arising from the shear wave velocity $V_S = \sqrt{\frac{\mu}{\rho}}$, ρ is density, and $Q_S \equiv Q_{\mu}$. Compressional waves experience losses both in shear (μ) 177 and incompressibility (K) moduli, where $V_P = \sqrt{\frac{K+4\mu/3}{\rho}}$. The attenuation quality factor, Q, is the 178 179 ratio of the Imaginary (Im) to Real (Re) parts of the complex moduli (shear μ or bulk K), i.e., $Q_K = \frac{Im(K)}{Re(K)}$ and $Q_\mu = \frac{Im(\mu)}{Re(\mu)}$. The relationship between Q_P, Q_μ , and Q_K is (Anderson, 1989) 180

$$Q_p^{-1} = LQ_{\mu}^{-1} + (1 - L)Q_K^{-1}$$

$$L = (4/3)(V_s/V_p)^2$$
(4)

181 Each earthquake propagation path extends to ACO. The attenuation observed at ACO from 182 the NW event (Figure 1) may be effectively removed from the attenuation observed from more 183 distant earthquakes along the same azimuth. For multiple events near a common site (e.g., Pāhala), the values for Q_P and Q_S are stacked, a median filter is applied, and Q_K is determined 184 185 over the frequency band common to Q_P and Q_S

186 A transect of Mauna Loa from Pāhala to the NW event may be determined by subtracting the 187 contribution of the NW event from the Pāhala event. To accomplish this, consider the accumulative t^* (e.g., Cormier, 1982): 188

$$t^* = \int_{path} \frac{dt}{Q} \approx \sum_i \frac{\Delta t_i}{Q_i}$$
⁽⁵⁾

189 The t^* for the whole path is the cumulative t_i^* for the *i* path segments, where Δt_i is the path 190 segment travel time.

$$t^*_{Pahala \to NW} + t^*_{NW \to ACO} = t^*_{Pahala \to ACO}$$
(6)

$$t^*_{Pahala \rightarrow NW} = t^*_{Pahala \rightarrow ACO} - t^*_{NW \rightarrow ACO}$$

191 Solving for Q over the path, we derive $Q_{Pahala \rightarrow NW}$ from measured values at Pāhala and NW 192 and at common frequencies, by solving (7).

$$\frac{\Delta t_{Pahala \to ACO} - \Delta t_{NW \to ACO}}{Q_{Pahala \to NW}} = \frac{\Delta t_{Pahala \to ACO}}{Q_{Pahala \to ACO}} - \frac{\Delta t_{NW \to ACO}}{Q_{NW \to ACO}}$$
(7)

This procedure to estimate t^* works well when the successive Q_i differ by more than the "noise" in the Q-f trend. If the Q does not change more than the background fluctuations between successive segments, then the derived Q will have *non-Q-like* behavior due to the spectral noise, i.e., negative Q or extreme values. These fluctuations were hypothesized as due to seismic scattering variation (Butler 2020). In these instances, we may assume that the mean Q of the two segments is representative (see *Path Q segmentation*, Appendix A).

199 I derive the Q_{eff} for the azimuthal paths from earthquake to ACO, and use the relationship

200 (*time/Q*) between propagation time and Q in order to subdivide the Q_{eff} among path segments

201 (Butler, 2020). However, herein the segments are between earthquakes along the azimuthal path,

202 whereas in Butler (2020) I used derived Q_{eff} segments between seismic stations along azimuth.

203 Q_P and Q_S are measured and converted to their component moduli, bulk (Q_K) and shear (Q_S)

attenuation.

205 Parenthetically, $Q_{Pahala \rightarrow NW} \equiv Q_{NW \rightarrow Pahala}$ due to the reciprocity of the seismic source and 206 receiver for the anelastic Earth, e.g., $G(x, x'; t) = G^T(x', x; t)$ where G is the seismic Green 207 tensor (Dahlen and Tromp, 1998).

208

209 4 Q TRANSECTS

210 **4.1 Mauna Loa**

I present the Q_K and Q_S measurements from the spectral analysis of the earthquake data along a transect beneath and through Mauna Loa. The raw data all have propagated to ACO, north of O'ahu (Figure 1). I use the mechanics of t^* (*time*/Q) to separate the propagation into piecewise segments for path Q between earthquake sources and to ACO. In general, the Q values are frequency dependent, and linear in many cases. Because the mechanisms from which attenuation arises operate on the complex moduli μ and K, and to limit redundant information in the already complicated figures, Q_P is not plotted.

The Mauna Loa transect shown in Figure 3 [D] extends from Pāhala and Kama'ehuakanaloa 218 219 (deep and shallow events) to Mauna Loa NW (propagating near the crust/moho interface). The 220 distance of the transect to Mauna Loa NW ranges from 70 km (Pāhala) and 116 km 221 (Kama'ehuakanaloa). Given the multiple earthquake magnitudes and depths in the Pāhala and 222 Kama'ehuakanaloa source regions, the distribution of Q_K values is relatively compact (Figure 3, [A]). Note significantly that O's between the deep earthquakes (Pāhala and Kama'ehuakanaloa) 223 and NW show very similar O(f) spectra in Figure 3 [A, C]. In Figure A5, only the deep transects 224 225 are shown. The close overlap of the Pāhala and Kama'ehuakanaloa paths in Figures 3 [D] and A5 gives credence to the close overlap of observed Q(f), though it remains surprising that paths 226

differing by 46 km can be similar at high frequencies (~35 Hz). Butler (2020) considered
possible scattering losses in the context of intrinsic Q

$$\frac{1}{Q_{eff}} = \frac{1}{Q_{intrinsic}} + \frac{1}{Q_{scattering}}$$
(8)

and postulated that the scattering effects are manifested in the high-frequency variability (scatter) in Q_{eff} , modifying the frequency trend for $Q_{intrinsic}$. From this perspective, the background scatter is surprisingly consistent.

232 At low frequency < 5Hz the $Q_K \sim 25$ for the five trends in Figures 3. Overall, the Q_K trend 233 between Pāhala* (shallow earthquake nearest to the Pāhala deep swarm, Figures 1 [Right] and 234 Figure 3[B]) and NW shows the highest attenuation—even when comparing with the 235 Kama'ehuakanaloa to NW paths. The broadest frequency range and highest Q_K characterizes the 236 Pāhala deep to NW trend Figure 3[A]. Both Kama'ehuakanaloa and Pāhala suggest that the bulk 237 attenuation environment beneath the Mauna Loa edifice shares many common features. For Q_S , the situation in Figure 3 [B] is very different, where much greater attenuation is seen 238 239 for Pāhala*–NW than either Kama'ehuakanaloa_s–NW or Pāhala_s–NW. For the deep O_S trends in 240 Figure 3 [C], the attenuation for both paths overlay and increase rapidly with frequency to Q_S in 241 the thousands above 10 Hz. The commonality of the Q_K for both deep and shallow events is in 242 strong contrast to Q_{S} . This dichotomy indicates that the physical mechanisms of attenuation for

243 Q_K and Q_S differ.

244

245 4.2 The Summit and Both Sides of Mauna Loa

In the prior section the Mauna Loa transect integrated the total attenuation accrued inpropagating beneath a traverse of Mauna Loa. Here, I subdivide the path into three sections:

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

Southeastern (Pāhala* and Kama'ehuakanaloa to Summit), Northwestern (Summit to NW Mauna Loa), and the Summit. The time in propagating each segment is simplified to the distance divided by the group velocity of P and S wave first arrivals, observed at ACO. The primary shallow pathways occur near the moho— shared by Pāhala*, Kama'ehuakanaloa, NW, and NW Caldera propagation (see Figure 1 [Right]). Table A2 shows earthquake source depths and Pand S-wave group velocities—where values are averaged for multiple events at a site. The Summit serves as a section encompassing both Mauna Loa caldera and NW of the Caldera with a 9 km radius. The Q_K and Q_S for these segments are plotted in the Figure 4. The Q values observed ($Q_K \sim 9$ and $Q_S \sim 10$) are significantly smaller than reported elsewhere. From a Pacific transect near Wake Island, Butler et al., (1987) found Q_K near 200 at 2.5 Hz. At the periods of radial free oscillation modes (>>1 s), Durek and Ekström (1995) proposed an earth model with bulk attenuation limited to the aesthenosphere with $Q_K \sim 175$. For comparison with Kīlauea 2018 data, the path from the Halema'uma'u caldera is 46 km to the POHA seismic station at the Mauna Loa – Mauna Kea saddle, where the Q values near 1 Hz obtained by Butler (2020) are $Q_K \sim 58$ and $Q_S \sim 81$. For the Lau basin, Wei and Wiens (2020) report minimum Q

the Lau back-arc spreading centers west of the Tonga Arc, noting that locations are not well

values of $Q_K \sim 21$ and $Q_S \sim 27$ measured near 1 Hz, confined to the region immediately beneath

265 resolved on a length and depth scale of <50 km..

Propagation at the Mauna Loa Summit from the southeast and toward the northwest manifest asymmetric Q_K and Q_S (Figure 5). The Q_K values to the northwest are much smaller than exhibited from the southeast. A conjecture on the cause of this asymmetry between the southeast and northwest is that trailing residual heat remains significant near the moho from the southeast apparent motion of the Hawai'i hotspot southeast relative to the Pacific plate moving northwest 271 (e.g., Wright and Klein, 2005). Partial melt and bulk attenuation will be discussed in section 5.3 272 Q_K and Partial Melt.

273 For shear attenuation—discussed in the following section—the northwest path is 274 intermediate between low Q_S (larger shear attenuation) from Pāhala and higher Q_S from the 275 Kama'ehuakanaloa to the Summit path.

276

277

4.3 Kama'ehuakanaloa and Pāhala Transect

278 The pathway transiting from Kama'ehuakanaloa to Pāhala presents the only deep 279 earthquakes in this study, and offers a view of Q_K and Q_S for both shallow (<12 km) and deep 280 (>30 km) propagation. In Figure 6 the ubiquitous observation of $Q_K < Q_S$ holds true for the 281 southeastern coast of Mauna Loa to the nascent Kama'ehuakanaloa volcano. For shallow 282 propagation, the Kama'ehuakanaloa– $P\bar{a}hala^*$ path has a relatively high Q_S , which may 283 underwrite the higher Q_S of the Kama'ehuakanaloa–Summit transect, as seen in Figure 5. Given 284 the influence of the higher Q_S offshore, in adjudicating the asymmetry of Mauna Loa Q the 285 Pāhala*–Summit path is the preferred comparison for Summit–NW where f < 11 Hz, and the 286 two paths are relatively symmetric. For f > 11 Hz the Summit–NW path shows higher O_S and 287 lower attendant attenuation. For the deep propagation (Figure 6) between Kama'ehuakanaloa and 288 Pāhala, the difference between Q_S and Q_K expands significantly. For Q_S the deep path has lower 289 attenuation and the Q_K larger attenuation than the shallow case.

290

291 4.4 Transect maps of Q

292

293 The Q(f) plots from Figures 2–6 are summarized in Figures 7 (Q_K) and 8 (Q_S), where the Q's 294 are plotted as a function of frequency (f) and Q within the narrow study region. The detail plots

295	for Q_K and Q_S are shown together in Figure A6, for ease in comparison. The Figures 7 and 8 also
296	show a color mapping of Q_K and Q_S in plan view, each independently grouped into five
297	successive color bins by Q factor—note that the bins assigned by color differ between Q_K and
298	Q_S . By color the Q 's are ordered—blue > green > yellow > orange > red—from highest to lowest
299	Q. The lowest Q 's (largest attenuation) are found in the Mauna Loa summit region, followed by
300	the northwestern and southeastern slopes; the highest Q 's (lowest attenuation) occur between the
301	Northwest (NW) and ACO. The Q color-values are plotted as ellipses along the azimuth to ACO,
302	where the overlapping paths to Kama'ehuakanaloa are widened for clarity.
303	Although the detailed features of the seismic wave propagation cannot be resolved, the P-
304	wave group velocities are in the range 7.3 to 7.7 km/s for shallow Pāhala and Kama'ehuakanaloa
305	events, respectively, and 7.9 km/s in common for deep events (see Table A2). These group
306	velocities extend from the earthquake hypocenter to the Aloha Cabled Observatory location at
307	4.7 km below sea level. The depth to moho beneath Mauna Loa Summit is estimated as between
308	~18.5–16 km (Zucca, et al., 1982; Hill and Zucca, 1987; Park et al., 2009) In a tomographic
309	inversion, Lin et al. (2014) find that the Mauna Loa Caldera and Pāhala events both estimate the
310	base of crust at ~17 km, with a velocity of ~7.5 km/s. MacGregor et al., (2023) find a velocity of
311	\sim 7.5 km/s at the base of a \sim 17 km thick crust beneath the Mākukona–Kahala saddle at the
312	northwest coast of Hawai'i, where the moho velocity \sim 8–8.2 km/s. Given that the P-wave group
313	velocities are comparable with the near-moho (e.g., peridotite) and lower oceanic crust (e.g.,
314	gabbro) values, propagation near the moho-crustal boundary is a reasonable assumption, except
315	near ACO where upper crustal (basalt) propagation may also contribute.
316	To place this propagation into perspective, published estimates of the magma reservoir
317	beneath Mauna Loa summit include: 3–9 km (Koyanagi, 1987); 3–5 km (Walter and Amelung,

318	F., 2006); and 4.7 \pm 1.1 km (Amelung et al., 2007). Hence the observed Q_K and Q_S are measured
319	and occur below the depth of estimates for the magma chamber.
320	In viewing the variation of Q_K along the azimuthal corridor to ACO, the greatest contrast in
321	Q is found at earthquake site NW—which demarcates the boundary between segments ' b ' and
322	'd'. Between 6 and 14 Hz the smallest (largest attenuation) Q_K (~10–25) adjoins the highest Q_K
323	(~100–2000), see Figures 7 and A6. For Qs the situation is similar with the highest Q_K (~1000–
324	3000). The boundaries are necessarily indistinct since the site is an earthquake hypocenter. I
325	therefore conclude that there is a smooth transition across the 28 km distance (~17 wavelengths
326	for Vp) between NW and NW Caldera from low to high attenuation, respectively.
327	
328	5 ATTENUATION MECHANISMS
329 330	5.1 $Q_S(f)$ and Activation Energy of Olivine
331	In Butler (2020) the activation energy, E^* , derived for basalt is 50 kJ/mol from T, P, and Q
332	measured at two Hawai'i scientific drilling sites. This 50 kJ/mol activation energy for basalt,
333	derived from field data, is comparable to an experimentally determined value of 68 kJ/mol for
334	basalt (Fontaine et al., 2005). Here I use experimentally determined olivine E^* as representative
335	of an olivine subcrustal lithosphere. By employing experimental E^* and the thermal and pressure
336	differences at two depths, the behavior of Q_S with earthquake depth can be compared with the
337	observed Q_S variation.

338 For a frequency dependent activation process at Kama'ehuakanaloa:

$$Q_{S}(f, T_{1}, P_{1}) = Q_{0}(f)exp\frac{E^{*} + \bar{V}P_{1}}{RT_{1}}$$
(9)

339 where E^* is an activation energy, f is frequency, R is the gas constant (8.314 J mole⁻¹ ° K^{-1}), \overline{V} 340 is molar volume (44 × 10⁻⁶ m³ mole⁻¹). P_1 and P_2 are measured for Kama'ehuakanaloa

341	earthquake depths of 46 km and 11 km depths, respectively, from PREM (without ocean)
342	(Dziewonski and Anderson, 1981) at 1.37×10^9 and 2.8×10^8 Nm ⁻² . T_1 (1620°) and T_2
343	(1490°) are temperatures (° K) derived from a Hawaiian Hotspot geotherm (Lee et al., 2009).
344	The propagation paths from the Kama'ehuakanaloa earthquakes to ACO are nearly identical,
345	and differ the most between the earthquake hypocenters. Faul and Jackson (2015) find that an
346	olivine activation energy of 360 kJ/mol is broadly consistent with experimentally measured
347	activation energies: Mg grain boundary diffusion (360 kJ/mol; Farver & Yund, 2000), diffusion
348	creep (375 kJ/mol; Hirth & Kohlstedt, 2003), grainsize-sensitive viscoelastic relaxation (360
349	kJ/mol; Jackson & Faul, 2010), and dislocation recovery in fine-grained polycrystalline olivine,
350	both synthetic and San Carlos, respectively (240±43, 355±81 kJ/mol; Farla et al., 2011).
351	The range of olivine activation energies (360–375 kJ/mol) provides a reasonable match to
352	$Q_{S}(f)$ between 8 and 15 Hz at Kama'ehuakanaloa (Figure 9 [Left]) between the deep and two
353	shallow events, employing only a geotherm and pressure as a function of depth.
354	The second comparison (Figure 9 [Right]) shows estimates of a shear activation E^* between
355	240 and 260 kJ/Mol, congruent with Farla et al., (2011) experimental results on synthetic
356	polycrystalline olivine, which aligns the Pāhala deep data with the shallow Pāhala earthquake
357	between $f = 2$ and ~ 20 Hz. This is relatively consistent with the frequency range observed in
358	(Figure 9 [Left]). Above 20 Hz, the deep Q_S data trends shallower at high frequencies. Both
359	deep Q_S datasets in Figure 9 trend toward $Q_S \sim 3500-4000$ (very low attenuation).
360	We cannot definitively distinguish which E^* (singly or in concert with other olivine
361	processes) is the primary olivine Q_S physical mechanism beneath Kama'ehuakanaloa or Pāhala.
362	Nonetheless, a reasonable case is made in linking laboratory-determined olivine activation

energy to a real-world, activated attenuation process based solely on temperature and pressure changes and measured Q_{S} .

365

366 5.2 Q_K and Vesicular Basalt

367 Bulk attenuation can arise from the mismatch in bulk medium properties (Budiansky & 368 O'Connell 1980)—incompressibility K, coefficient of volumetric thermal expansion α_V , thermal 369 conductivity κ , and thermal diffusivity α_D . The observation of Q_K measured on the propagation 370 path from Kahalui Maui to ACO (Butler, 2020) led to a hypothesis that water-filled vesicles 371 within the crustal basalt provides a mechanism for bulk attenuation in the crust of the oceanic 372 lithosphere. Butler (2020) notes that at widely differing drilling sites and sea floor ages within 373 the Pacific, vesicular basalts are evident in the upper crust, with porosity values comparable to 374 those observed within the Island of Hawai'i. In Figure 10 I have plotted the Q_K from Butler et al. 375 (1987) and Butler (2020), which show similar attenuation trends— from $Q_K \sim 100$ at 2 Hz to 376 ~600 at 10 Hz. Including Q_K from Northwest Mauna Loa to ACO, somewhat larger attenuation 377 is indicated, with $Q_K \sim 100$ at 4 Hz to ~ 500 at 10 Hz. Butler et al. (1987) found significant Q_K 378 measured on a linear ocean bottom hydrophone array near Wake Island, and considered 379 contributions from both heterogeneous materials and partial melting. Bulk attenuation is 380 significant in the Alaskan subduction zone (Stachnik, et al., 2004), which is consistent with a 381 vesicular basalt origin in the crust within the subducting plate. 382 Following Butler et al (1987), when does Q_K imply vesicular bulk attenuation, and when does 383 partial melt bulk attenuation arise? For propagation near Wake Island the minimum age of the

384 seafloor is 85 MA (Hilde et al., 1976), which is without overt volcanism. The Q_K in the segment

385 from Kahului, Maui to ACO (Butler 2020) does not overlap obvious active volcanism (Haleakalā

386 is 24 km orthogonal to the ACO path). While there is no apparent partial melt associated with 387 Moloka'i, the possibility cannot be eliminated. Between Kīlauea and ACO the mean *P*-wave 388 group velocity observed was 7.1 km/s. As noted earlier velocities measured at ACO are in the 389 range 7.3 to 7.7 km/s for shallow Pāhala and Kama'ehuakanaloa earthquakes. These group 390 velocities are proxies for the structure of along path, and indicate that propagation includes both 391 the basaltic upper crust and gabbroic lower crust. Since gabbro has a lower porosity than 392 vesicular basalt, whenever Q_{K-f} is observed in the oceanic crust, the contribution of the upper 393 crust will predominate. Further development of a quantitative, vesicular basalt model for O_K 394 would enhance the interpretation of crustal-mantle, wave propagation and attenuation data.

395

396 5.3 *Q_K* and Partial Melt

397 Spetzler and Anderson (1968) suggested that a sharp dip in Q will be associated with the 398 onset of partial melting in the mantle. Schmeling (1985) references a number of theoretical 399 investigations focusing on the relationship between the seismic properties and partial melt, 400 assuming different idealized melt geometries (Walsh, 1969; O'Connell and Budiansky, 1977; 401 Mavko and Nur, 1975; Mavko, 1980), and modeled melts that can be assumed to occur in the 402 form of tubes, films, and triaxial ellipsoidal inclusions of arbitrary aspect ratio. One conclusion 403 of Schmeling (1985) is that triaxial ellipsoidal inclusions can be approximated by spheroidal 404 inclusions. Hammond and Humphries (2000) modeled "Melt squirt," a term coined by Mavko 405 and Nur (1975)—relaxation occurring when pressure differences between neighboring 406 inclusions drive fluid flow—wherein the melt is a network of realistically shaped conduits 407 joining ellipsoidal pores. Hammond and Humphries (2000) conclude, "We argue below that 408 these pressure differences probably do not drive enough melt squirt to provide significant

409	relaxation. Thus, bulk attenuation due to melt squirt is most likely not important in the seismic
410	band." Wei and Wiens (2020) note that there is no well-characterized physical mechanism for
411	bulk attenuation in the mantle (Faul & Jackson, 2015), and referred to Li and Weidner (2013),
412	who suggested that "when seismic waves travel though a partially molten region, the stress
413	perturbation will change melt fraction through a solid-liquid phase change and thus cause bulk
414	attenuation."
415	Lyakhovsky et al. (2021) presents a thermodynamic equilibrium, partial-melt framework for
416	bulk attenuation, quoting from their paper:
417	• "The suggested mechanism considers solid-melt phase transition at thermodynamic
418	equilibrium. Any pressure change, that takes the system out of thermodynamic
419	equilibrium, causes solidification or melting which modifies the heat balance according
420	to the Clausius-Clapeyron equation. The latent heat (sink or source) is transferred away
421	or towards the interface by conductive-advective mechanism, heating or cooling the
422	entire rock mass, and leading to energy loss and dissipation of the mechanical energy and
423	to seismic wave attenuation."
424	• "Mathematical formulation of this moving boundary or Stefan problem includes heat,
425	mass, and force balance equations."
426	• "The analytical solution for the heat balance equation, including latent heat associated
427	with the motion of the solid-melt interface, as well as temperature variations of the melt
428	inclusion, provides the relation between pressure and volumetric strain oscillations."
429	• "Wave attenuation, or quality factor (Q) is calculated from the time delay between
430	pressure and strain oscillations, or the ratio between real and imaginary bulk moduli."

431	This partial melt model of Lyakhovsky et al. (2021) is presented in Figure 11, where the Q_{K-}
432	frequency data for the varied pathways of this study are plotted. The quality of the fits of the data
433	to the model is encouraging, and provides for a basis for interpreting cell size and melt fraction
434	in the context of measured attenuation versus frequency. The highest Q_K trend ("d" in red) in
435	Figure 11 is measured from 37 km northwest of the Caldera to ACO, whereas the other paths
436	interact with the Mauna Loa Summit, Pāhala and Kama'ehuakanaloa closest to proximal
437	volcanism. Given concordance of the observed Q_{K-f} trends with the Q_{K-f} model of partial melt,
438	the model meets the usefulness criteria within the constraints of the model space.

- 439
- 440

6 ATTENUATION AND SEISMICITY

441 In the prior sections I have reviewed attenuation mechanisms which may underlie the 442 observed Q_K and Q_S variation along the azimuthal corridor connecting ACO, Mauna Loa, Pāhala, 443 and Kama'ehuakanaloa. The Q_K and Q_S mechanisms are very different, and Q_K and its 444 concomitant higher attenuation is considered now. Attenuation effects are evident for the broad 445 physiographic features of the volcano-minimum Q (maximum attenuation) as seen beneath the 446 Mauna Loa Caldera and Summit is not a surprise. Searching for additional correspondence 447 between variation in Q_K with other parameters of geophysical significance, seismicity stands 448 paramount. Since each earthquake hypocenter radiates seismic waves which are affected by the 449 local and path attenuation, the observation of seismicity at some locality but not at another, 450 potentially may present a causative connection. Recently, Matoz et al. (2020) relocated all 451 Hawai'i Island earthquakes between 1986 and 2018. The paper refocuses into sharp clarity prior 452 indistinct features. Figure 12 plots the Q_K map from Figure 7, for comparison with the Matoza et 453 al. (2020) relocated seismicity.

454	I restrict our comparison to the regional overlap of the Q_K map in Figure 7 with the high-
455	seismicity, rectangular C region designated by Matoza et al. (2020). At the far right, depth cross-
456	sections for the C region, both length-wise and width-wise (C'), are presented. Most
457	significantly, there is a clear demarcation between shallow (<15 km in red) and deep (>30 km in
458	blue) earthquakes where there is a paucity of hypocenters compared with the adjoining the
459	shallow and deep events from this study.
460	In Figure 3[D] the propagation paths of deep earthquakes in Pāhala and Kama'ehuakanaloa
461	cross this 15–30 km seismic gap. The Q_K range of ~40–200 (low to high frequency) for segment
462	K _d –P _d (c) is significant (Figure 3[A] and A5 deep transect). By the partial-melt model of bulk

463 attenuation (Figure 11), the mechanism is consistent with 5.0 mm cell size and a melt fraction of 464 $\sim 0.3\%$.

465 The Matoza et al. (2020) study relocated defined earthquake events. In contrast, Wilding et 466 al. (2023) "leverage advances in earthquake monitoring with deep learning algorithms to image 467 structures underlying..." a swarm of earthquakes near Pāhala at 30–40 km depth, using the 468 continuous data streams from the Earthscope Data Management Center. The study extended from November 2018 through April 2022—fifteen of these deep events with $M_L > 3.9$ 469 470 contributed to the present study. Wilding et al. (2023) find a "complex of mantle sills" near 471 Pāhala at 36–46 km depth—termed the Pāhala sill complex (PSC). Their transect from Mauna 472 Loa to Pāhala closely follows the azimuthal corridor to ACO. The hypocenter window of low 473 seismicity discussed between 15 and 30 km is considered by Wilding et al. (2023) to be the 474 "Pāhala-Mauna Loa seismicity band" ... "consistent with proposed magma transport between 475 PSC and the Mauna Loa edifice (Wright and Klein, 2006)."

476 Wilding et al. (2023) point out that, "Imaging the magma plumbing systems from the mantle 477 to crust remains challenging for most geophysical methods such as seismic tomography, geodetic 478 inversion, and gravity and electromagnetic surveys, because these methods typically are unable 479 to resolve the distribution and transportation of magma (Magee et al., 2018)." Perhaps the most 480 compelling evidence to date is observation of LP earthquakes, which are sources of harmonic 481 tremor linked with magma flow (Julian, 1994; Chouet, 1996). "Harmonic tremor is the seismic 482 indicator of magma movement and volcanic eruptions in Hawai'i." (Koyanagi, 1987). However, 483 Aki, K. and Kovanagi (1981) also conjectured, "it may be that most channels transport magma 484 aseismically, and only those with strong barriers generate tremor." 485 Bulk attenuation presents a new tool for assessing the existence of partial melt at depth, 486 wherever there is contact at the solidus between magma and solid. Bulk attenuation dominates with $Q_K < Q_S$ throughout the Mauna Loa – Pāhala – Kama'ehuakanaloa systems. In addition to 487 488 partial melt effects, bulk attenuation is also hypothesized from water-saturated vesicular basalts 489 in the shallow oceanic crust (Butler 2020). Neither of the bulk mechanisms are activated 490 processes, in contrast to shear attenuation, which fits an activation energy process between ~ 2 491 and ~20 Hz. Whenever Q_K is measured beneath the shallow oceanic crust, a *prima facie* case is 492 made for partial melt as the causative origin. These Q_K factors indicate maximum bulk 493 attenuation and partial melt lies beneath the Mauna Loa Summit near the moho. To the northwest 494 and southeast of the Summit, the bulk attenuation—and hence partial melt—varies. The apparent 495 100 km length of the Mauna Loa partial melt corridor near the moho begins beneath the 496 northwest slope of Mauna Loa, approximately midway between NW and the Summit, and 497 continues beneath the Caldera through to Kama'ehuakanaloa.

499 7 DISCUSSION

500 This study was initiated to understand the nature of high frequency (>50 Hz) wave 501 propagation from Mauna Loa earthquakes propagating to the Aloha Cabled Observatory (ACO), 502 following the study of 2018 Kīlauea swarm. As I delved further in the shallow (<12 km) and 503 deep (>30 km) earthquakes and their paths, the study morphed significantly into an analysis of 504 attenuation along the narrow (1°) azimuthal propagation corridor to ACO from Mauna Loa-505 Pāhala–Kama'ehuakanaloa. In this study I focused only on Q_K (bulk) and Q_S (shear) attenuation 506 factors dependent upon the complex elastic moduli (K incompressibility and μ rigidity). Here Qp507 was treated as a means to derive Q_K . 508 The effective Q_K and Q_S for Mauna Loa paths to ACO are both lower (more attenuating) 509 than Kīlauea and manifest a similar linear trend with frequency. For all paths, $O_K < Q_S$ 510 indicating that bulk attenuation dominates shear. Q_S from deep events in Pāhala and 511 Kama'ehuakanaloa show similar frequency trajectories: $dQ_s/df \sim 200$ from 2–15 Hz, then both 512 change course to $Q_{S}/df \sim 30$ from 15–50 Hz, suggesting a change in the underlying attenuation 513 mechanism. The Pāhala deep Q_K also follow a trajectory $Q_K/df \sim 30$ (offset from Q_S by a Q 514 factor of ~ 2500), though it is not obvious why, given the different underlying attenuation 515 mechanisms.

Given the diversity of path Q(f) propagating to ACO, the paths were separated into segments derived from time/Q sections. For example the path Pāhala–ACO is converted to a Pāhala–NW segment, and similarly for paths from Kama'ehuakanaloa, Mauna Loa Caldera, and Summit. Thus, a Q transect of Mauna Loa from southeast to northwest is derived. For Q_K the $Q_K(f)$ trends are linear, and similar for both deep and shallow paths, whereas the deep Qs paths have much lower attenuation than their shallow counterparts. The Mauna Loa Summit shows the largest

522	attenuations in the study with Q_K and $Q_S \sim 10$. By comparing the Q factors from the southeast to
523	the Summit and from the Summit to the northwest, Q_K is smaller (more attenuating) on the
524	northwest slope than the southeast slope which may indicate residual heat from the hotspot
525	apparent motion southeast relative to the Pacific plate moving northwest. For paths between
526	Pāhala an'd Kama'ehuakanaloa, the deep events show lower Q_K and higher QS, with shallow
527	events intermediate. The overall propagation to ACO is close to the moho, as constrained by P-
528	and S-wave group velocities. To place the derived Q and their segment boundaries into
529	perspective, Q_K and Q_S maps are made showing the distribution of paths in a hierarchy sorted by
530	Q factors.
531	Having measured and derived Qs and Q_K along the narrow corridor, focus turned toward
532	understanding the underlying attenuation mechanisms. Using a hotspot geotherm, pressure from
533	the PREM earth model, and experimental activation energies for olivine, I was able to project the
534	Qs from two Kama'ehuakanaloa shallow earthquakes to the observed Qs for the deep
535	earthquake, and similarly for Pāhala shallow and deep earthquakes. Hence, experimentally
536	derived olivine activation energies are successfully matched with field measurements at Pāhala
537	and Kama'ehuakanaloa. For the deep earthquakes, there are observed changes in $Q-f$ trends at
538	higher frequency, which likely indicate changes in the activated attenuation mechanism.

539 However, for shallow earthquakes **the** Qs data at higher frequency data for shallow paths do not 540 meet SNR criterion, thus affording no comparison or estimation of E^* .

541 Comparing Q_K measured from paths near Wake Island, Kīlauea (Maui–ACO), and now 542 Mauna Loa (NW–ACO), model constraints are suggested for shallow crustal propagation where 543 Q_K arises from the heterogeneity of water-filled, vesicular basalts. The range of Q_K observed is

544	\sim 100–600. This assessment is qualitative, and a quantitative model including wave propagation
545	effects would enhance further understanding of this attenuation process.
546	To understand Q_K where propagation is near the moho—where gabbros and olivine do not
547	show sufficient bulk heterogeneity—the primary mechanism of Q_K is conjectured as due to
548	partial melting. This makes eminent sense in the volcano-hotspot region of the study. I have
549	applied a thermodynamic equilibrium model to the Q_K data set, and found excellent fits. This
550	model projects Q_K and f from a per-cent, partial melt fraction, and the size of the cell and its
551	inclusion. By applying the partial-melt model to the mapped distribution of Q_K , the variation of
552	the melt fraction and apparent cell size may be viewed along the transect to ACO. Finally, I have
553	compared the Q_K with mapped seismicity and observe that areas of low seismicity may also have
554	significantly low Q_K —hence consistent with a partial melt pathway for magma flow. This
555	interpretation is consistent both with discussion in the reference literature, and with the most
556	recently completed earthquake relocation efforts and machine learning analysis.

558 7.1 Culmination

559 I have measured extensive Q_K and Q_S along a transect through Hawai'i from

560 Kama'ehuakanaloa volcano, a Pāhala deep swarm, and Mauna Loa to the Aloha Cabled

561 Observatory. Generally, $Q_K < Q_S$, and both are lowest beneath the Mauna Loa Summit. Bulk and

shear attenuation mechanisms have been explored and modeled. Q_K and Q_S differ substantially,

563 underscoring their differing underlying mechanisms. Applying a thermodynamic equilibrium

model of partial melt to $Q_K(f)$ data provides a reasonable qualitative and quantitative fit, which

565 elevates $Q_K(f)$ as a remote sensor for partial melt.

567	Data and Resources
568	All earthquake locations (2011–2018) were obtained from the relocated catalog of Matoza et al.
569	(2020), and thereafter (2019-2023) from the USGS Hawaiian Volcano Observatory network
570	catalog (https://earthquake.usgs.gov/earthquakes/search/) The Matoza et al., (2020) catalog is
571	now integrated into the HVO catalog. ALOHA hydrophone data were downloaded from the
572	University of Hawai'i Aloha Cabled Observatory (ACO).
573	
574	Acknowledgements
575	I thank Don L. Anderson for his formative discussions of bulk attenuation. I thank the University
576	of Hawai'i and the NSF for supporting the Aloha Cabled Observatory.
577	HIGP contribution number 2494.
578	
579	
580	References
581	Aki, K. (1967). Scaling law of seismic spectrum, J. Geophys. Res. 72, no. 4, 1217–1231.
583 584	Aki, K. and Koyanagi, R., 1981. Deep volcanic tremor and magma ascent mechanism under Kilauea, Hawaii. <i>Journal of Geophysical Research: Solid Earth</i> , 86(B8), pp.7095-7109.
585 586 587	Amelung, F., Yun, S.H., Walter, T.R., Segall, P. and Kim, S.W., 2007. Stress control of deep rift intrusion at Mauna Loa volcano, Hawaii. <i>Science</i> , <i>316</i> (5827), pp.1026-1030.
588 589 590	Anderson, D.L., 1989. Theory of the Earth. Blackwell Scientific Publications, p. 300.
591 592	Brune, J. N. (1970). Tectonic stress and the spectra of seismic shear waves from earthquakes, J. Geophys. Res. 75, no. 26, 4997–5009.
595 594 595 596 597	Budiansky, B. & O'Connell, R.J., 1980. Bulk dissipation in heterogeneous media, in Solid Earth Geophysics and Geotechnology, pp. 1–10, ed. Nasser, S. N., American Society of Mechanical Engineers.
598 599 600 601	Butler, R., C. S. McCreery, L. N. Frazer, and D. A. Walker (1987), High-frequency seismic attenuation of oceanic P- and S-waves in the western Pacific, <i>Journal of Geophysical</i> <i>Research Solid Earth</i> , 92 , 1383–1396 (1987).
602 603 604 605	Butler, R., 2018. High-frequency (>100 Hz) earthquakes North of Moloka'i detected on the seafloor at the Aloha cabled observatory high-frequency earthquakes North of Moloka'i detected on the seafloor, <i>Bull. seism. Soc. Am.</i> , 108 (5A), 2739–2747.

606 607	Butler, R., 2019. Composite earthquake source mechanism for 2018 M w 5.2–5.4 Swarm at K Kīlauea Caldera: antipodal source constraint, <i>Seismol. Res. Lett.</i> , 90 (2A), 633–641.
608	
609	Butler, R., 2020. Bulk, shear and scattering attenuation beneath Hawaiian Volcanos and in the
610	oceanic crust extending to the Aloha Cabled Observatory. Geophysical Journal
611	<i>International</i> , 223(1), pp.543-560.
612	
613	Chouet, B.A., 1996 (Mar 28). Long-period volcano seismicity: its source and use in eruption
614	forecasting. Nature 380, 309 – 316.
615	
616	Cormier VF. The effect of attenuation on seismic body waves. Bulletin of the Seismological
617	Society of America. 1982 Dec 1;72(6B):S169-200.
618	
619	Dahlen, F. A. and Tromp, J., 1998. Theoretical global seismology. In Theoretical Global
620	Seismology. Princeton university press, 1025 pp.
621	
622	Durek, J.J. and Ekström, G., 1996. A radial model of anelasticity consistent with long-period
623	surface-wave attenuation. Bulletin of the Seismological Society of America, 86(1A), pp.144-
624	158.
625	Dziewonski, A.M. & Anderson, D.L., 1981. Preliminary reference Earth model, Phys. Earth
626	planet. Inter., 25 (4), 297–356.
627	
628	Farla, R.J.M., Kokkonen, H., Fitz Gerald, J.D., Barnhoorn, A., Faul, U.H. and Jackson, I., 2011.
629	Dislocation recovery in fine-grained polycrystalline olivine. Physics and Chemistry of
630	Minerals, 38(5), pp. 363-377.
631	
632	Farver JR, Yund RA, 2000, Silicon diffusion in forsterite aggregates: implications for diffusion
633	accommodated creep, Geophys. Res. Lett. 27:2337–40
634	
635	Faul, U. and Jackson, L. 2015. Transient creep and strain energy dissipation: An experimental
636	nerspective Annual Review of Earth and Planetary Sciences 43 np 541-569
637	perspective. A minute ite view of Euren and Fanotary Sciences, 15, pp.5 11 505.
638	Fontaine F R Ildefonse B & Bagdassarov N (2005) Temperature dependence of shear wave
639	attenuation in partially molten gabbronorite at seismic frequencies. Geophysical Journal
640	International 163: 1025-1038
641	International, 105. 1025 1050.
642	Hammond W.C. and Humphreys, F.D. 2000 Upper mantle seismic wave attenuation: Effects of
643	realistic partial melt distribution <i>Journal of Geophysical Research</i> : Solid Earth 105(B5)
644	nn 10087 10000
645	pp.10787-10777.
646	Hansen S. Thurber C. Mandernach M. Haslinger F. & Doran C. 2004 Seismic velocity and
647	attenuation structure of the east rift zone and south flank of Kilauea Volcano. Hawaii <i>Bull</i>
648	attenuation structure of the east fift zone and south finite of Kinauca voicano, fiawan, Duu .
0 1 0 6/10	Setsin. Soc. All., 74(4), 1430-1440.
0 1 7 650	Hilds T.W.C. N. Isozoli and I.M. Wagaman 1076 Masazaia san floor annoding in the north
651	Decific in The Geophysics of the Decific Ocean Designed its Marsing
0.51	raeme, in the Ocophysics of the raeme Ocean Dasinand its Margins,

652 653	Geophys.Monogr.Ser.vol. 19, edited by G. H. Sutton, M. H. Manghnani, and R. Moberly, pp. 205-226, AGU, Washington, D.C.
655 656 657	Hill, D. P., and J. J. Zucca (1987), Geophysical constraints on the structure of Kilauea and Mauna Loa volcanoes and some implications for seismomagmatic processes, U.S. Geol. Surv. Prof. Pap., 1350, 903–917.
658 659 660	Hirth G, Kohlstedt DL. 2003. Rheology of the upper mantle and the mantle wedge: a view from the experi- mentalists. Geophys. Monogr. 138:83–105.
661 662 663 664 665	Jackson, I. and Faul, U.H., 2010. Grainsize-sensitive viscoelastic relaxation in olivine: Towards a robust laboratory-based model for seismological application. Physics of the Earth and Planetary Interiors, 183(1-2), pp.151-163.
666 667	Julian, B.R., 1994. Volcanic tremor: nonlinear excitation by fluid flow. Journal of Geophysical Research 99 (B6), 11859 – 11877.
669 670 671 672	Kaneko, Y., and P. M. Shearer (2014). Seismic source spectra and estimated stress drop derived from cohesive-zone models of circular subshear rupture, Geophys. J. Int. 197, no. 2, 1002–1015.
673 674 675 676	Kaneko, Y., and P. M. Shearer (2015). Variability of seismic source spectra, estimated stress drop, and radiated energy, derived from cohesive-zone models of symmetrical and asymmetrical circular and elliptical ruptures, J. Geophys. Res. 120, no. 2, 1053–1079.
677 678 679 680	Koyanagi, R.Y., 1987. Seismicity associated with volcanism in Hawaii: Application to the 1984 eruption of Mauna Loa volcano. Open-File Report 87-277, Department of the Interior, US Geological Survey.
681 682 683 684 685	Lee, C.T.A., Luffi, P., Plank, T., Dalton, H. and Leeman, W.P., 2009. Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets using new thermobarometers for mafic magmas. Earth and Planetary Science Letters, 279(1-2), pp.20-33.
686 687 688 689	Li, L., & Weidner, D. J. (2013). Effect of dynamic melting on acoustic velocities in a partially molten peridotite. Physics of the Earth and Planetary Interiors, 222, 1–7. https://doi.org/10.1016/j.pepi.2013.06.009
690 691 692	Lin, G., Shearer, P.M., Matoza, R.S., Okubo, P.G. and Amelung, F., 2014. Three-dimensional seismic velocity structure of Mauna Loa and Kīlauea volcanoes in Hawaii from local seismic tomography. <i>Journal of Geophysical Research: Solid Earth</i> , <i>119</i> (5), pp.4377-4392.
695 694 695 696 697	Lin, G., Shearer, P.M., Amelung, F. & Okubo, P.G., 2015. Seismic tomography of compressional wave attenuation structure for Kīlauea Volcano, Hawai'i, <i>J. geophys. Res.</i> , 120, 2510–2524.

698 699 700 701	Lyakhovsky, V., Shalev, E., Kurzon, I., Zhu, W., Montesi, L. and Shapiro, N.M., 2021. Effective seismic wave velocities and attenuation in partially molten rocks. <i>Earth and Planetary Science Letters</i> , <i>572</i> , p.117117.
702 703 704 705 706	MacGregor, B. G., R. A. Dunn, A. B. Watts, C. Xu, and D. J. Shillington (2023). A seismic tomography, gravity, and flexure study of the crust and upper mantle structure of the Hawaiian Ridge, Part 1, Journal of Geophysical Research: Solid Earth, https://doi.org/10.1029/2023JB027218
707 708 709	Madariaga, R. (1976). Dynamics of an expanding circular fault, Bull. Seis- mol. Soc. Am. 66, no. 3, 639–666.
710 711 712	Madariaga, R. (1977). High-frequency radiation from crack (stress drop) models of earthquake faulting, Geophys. J. Int. 51, no. 3, 625–651.
713 714 715 716 717 718	 Magee, C., C. T. E. Stevenson, S. K. Ebmeier, D. Keir, J. O. S. Hammond, J. H. Gottsmann, K. A. Whaler, N. Schofield, C. AL. Jackson, M. S. Petronis, B. O'Driscoll, J. Morgan, A. Cruden, S. A. Vollgger, G. Dering, S. Micklethwaite, M. D. Jackson, Magma Plumbing Systems: A Geophysical Perspective. <i>J. Petrol.</i> 59, 1217–1251 (2018). doi:10.1093/petrology/egy064
719 720 721	Mavko. G.M., 1980. Velocity and attenuation in partially molten rocks. J. Geophys. Res., 85, 5173—5189.
722 723 724	Mavko, G.M. and Nur, A., 1975. Melt squirt in the asthenosphere. J. Geophys. Res., 80, 1444–1448.
725 726 727 728	Matoza, R.S., Okubo, P.G. and Shearer, P.M., 2021. Comprehensive High-Precision Relocation of Seismicity on the Island of Hawai'i 1986–2018. Earth and Space Science, 8(1), p.e2020EA001253.
729 730 731	Neal, C.A., <i>et al.</i> , 2019. The 2018 rift eruption and summit collapse of Kīlauea Volcano, <i>Science</i> , 363 (6425)367–374.
732 733 734	O'Connell, R.J. and Budiansky, B. 1977. Viscoelastic properties of fluid-saturated cracked solids. J. Geophys. Res., 82, 571 9–5735.
735 736 737	Park, J., Lindberg, C.R. & Vernon, F.L., 1987. Multitaper spectral analysis of high-frequency seismograms, J. geophys. Res., 92(B12), 12 675–12 684.
738 739 740 741	Park, J., Morgan, J.K., Zelt, C.A. and Okubo, P.G., 2009. Volcano-tectonic implications of 3-D velocity structures derived from joint active and passive source tomography of the island of Hawaii. <i>Journal of Geophysical Research: Solid Earth</i> , 114(B9).

- Scherbaum, F. and Wyss, M., 1990. Distribution of attenuation in the Kaoiki, Hawaii, source
 volume estimated by inversion of P wave spectra. *Journal of Geophysical Research: Solid Earth*, 95(B8), pp.12439-12448.
- Schmeling, H., 1985. Numerical models on the influence of partial melt on elastic, anelastic and
 electric properties of rocks. Part I: elasticity and anelasticity. Phys. Earth Planet. Inter., 41:
 34—57.
- Shearer, P. M., G. A. Prieto, and E. Hauksson (2006). Comprehensive analy- sis of earthquake
 source spectra in southern California, J. Geophys. Res. 111, no. B6, doi:
 10.1029/2005JB003979.
- Spetzler, H. and D.L. Anderson, 1968. The Effect of Temperature and Partial Melting on
 Velocity and Attenuation in a Simple Binary System, JGR Vol. 73, No. 18.
- Stachnik, J.C., Abers, G.A. and Christensen, D.H., 2004. Seismic attenuation and mantle wedge
 temperatures in the Alaska subduction zone. *Journal of Geophysical Research: Solid Earth*, 109(B10).
- Hanks, T.C. & Thatcher, W., 1972. A graphical representation of seismic source parameters, J.
 Geophys. Res., 77(23), 4393–4405.
- Walsh, J.B., 1969. New analysis of attenuation in partially melted rock. .1. Geophys. Res.. 74,
 4333–4337.
- Walter, T.R. and Amelung, F., 2006. Volcano-earthquake interaction at Mauna Loa volcano,
 Hawaii. *Journal of Geophysical Research: Solid Earth*, 111(B5).
- Wei, S.S. and Wiens, D.A., 2020. High bulk and shear attenuation due to partial melt in the
 Tonga-Lau back-arc mantle. Journal of Geophysical Research: Solid Earth, 125(1),
 p.e2019JB017527.
- Wilding JD, Zhu W, Ross ZE, Jackson JM. The magmatic web beneath Hawai 'i. Science. 2023
 Feb 3;379(6631):462-8.
- Wright, T.L. and Klein, F.W., 2006. Deep magma transport at Kilauea volcano,
 Hawaii. *Lithos*, 87(1-2), pp.50-79.
- Zucca, J.J., Hill, D.P. and Kovach, R.L., 1982. Crustal structure of Mauna Loa volcano, Hawaii,
 from seismic refraction and gravity data. *Bulletin of the Seismological Society of America*, 72(5), pp.1535-1550.
- 783

779

749

753

760

786	Figure 1. [Left] plots the key propagation paths of caldera earthquakes from Mauna Loa,
787	Kama'ehuakanaloa, and the deep seismicity near Pāhala; these paths to the Aloha Cabled
788	Observatory (ACO) are shown in red, whereas the yellow path is from Kīlauea's caldera (Butler
789	2020). The azimuths from ACO to Kama'ehuakanaloa, and Pāhala differ by < 1°. The relatively
790	close proximity of the paths between ACO and the northwest Hawai'i Island advocate for
791	common, parallel attenuation features. [Right] Map of Hawai'i showing earthquake data
792	locations. Pathways in yellow connect ACO with Pāhala, Kama'ehuakanaloa, and Maunaloa.
793	Shallow events with depths < 12 km are yellow, deep events > 30 km plotted red, and very
794	shallow events within the Mauna Loa Caldera (~ -0.2 km) are in white. The Pāhala earthquake
795	marked by * is the shallow event (yellow) closest to the Pāhala deep seismicity—the other three
796	shallow Pāhala events are 12 to 22 km from the Pāhala deep swarm. The summit region includes
797	two earthquakes northwest of Mauna Loa Caldera.

803 Figure 2. [Left] A direct comparison of the measured effective Q—bulk Q_K and shear Q_S —from 804 Kīlauea and Mauna Loa Calderas, Halema'uma'u and Moku'āweoweo, respectively. The 805 earthquake hypocenters had median depths of about 0.3 km at Kīlauea and -0.2 km at Mauna 806 Loa, and similar distances > 440 km to ACO. [Right] Each of the O_K and O_S paths start southeast 807 of Mauna Loa and propagate beneath Mauna Loa to ACO. Solid lines refer to Pahala, whereas a 808 dotted line refers to Kama'ehuakanaloa. Deep and shallow earthquake sites are designated with appended subscripts "d" or "s", respectively, which include stacked data. The single Pāhala 809 810 shallow earthquake closest to the deep seismicity is marked with a subscript *. Note the diversity 811 of *Q*-trends arising within this crowded corridor.

814 Figure 3. Several Mauna Loa transects [ABC] from southeast to northwest are shown for Q_K and Q_{S} . Paths follow the nomenclature of Figure 2. The earthquake at Mauna Loa_{NW} is shallow at 815 13.3 km depth. Segments are named by their endpoints. The subfigure [A] is Q_K , and Q_S plots in 816 817 subfigures [B, C] for shallow and deep, respectively. Representative seismic wavelengths are noted for low and high frequency—for Q_K the Vp wavelength is shown. Note the Q_K and Q_S 818 819 linear frequency trends in the subfigures [A, B]. For the deep Q_S transect [C] there are one or more changes in slope, suggesting more than one shear wave attenuation mechanism is 820 821 operating. The propagation paths beneath Mauna Loa are simply illustrated in the cartoon [D], where "P" implies Pāhala, "K" Kama'ehuakanaloa, "s" shallow, "d" deep, and "*" indicates the 822 Pāhala shallow earthquake closest to the Pāhala deep swarm (Figure 1 [Right]). Note the 823 similarity across the frequency band between Mauna Loa_{NW}-Pāhala_d and Mauna Loa_{NW}-Kama_d 824 825 transects within both [A] & [C], which share common structure propagating to NW [D]. See also

Figure 4. The bulk Q_K (blue) and shear Q_S (red) are plotted from the Mauna Loa Summit

830 region, which encompasses depths from -0.2 to 10.7 km.

835 Figure 5. The Q_{eff} for segments from Pāhala and Kama'ehuakanaloa to the Summit are plotted

in red and blue, whereas pathways from Summit to NW Mauna Loa are shown in black. [Left]

837 For Q_K northwest paths are much attenuated with respect to the southeastern paths from Pāhala

and Kama'ehuakanaloa. This presents evidence that more bulk attenuation at Mauna Loa takes

839 place northwest of the Summit region than to the southeast. Nonetheless, the southeastern paths

840 from Kama'ehuakanaloa and Pāhala are very similar. [Right] For Q_S the Summit–NW path

841 (black) lies between the Kama'ehuakanaloa–Summit and Pāhala–Summit paths, overlapping the

842 Kama'ehuakanaloa trend at higher frequency, and Pāhala trend at lower frequency.

Figure 6. The bulk Q_K and shear Q_S are isolated for the path segments between

846 Kama'ehuakanaloa and Pāhala, for both shallow (≤ 12 km, subscript s or *) and deep (subscript

d) pathways (>30 km). In this comparison, the shallow Pāhala data are for the earthquake at

848 Pāhala*. Note that the Q values are now plotted logarithmically along the vertical axis to permit

the dynamic range in the data. As elsewhere, $Q_K < Q_S$. The bulk Q_K for deep paths diverge more

850 substantially from Q_S from comparable shallow paths.

Figure 7. [Left] Q_K transect maps (Figures 2–6) are subdivided into a hierarchy of segmented

- 854 Q_K measurements. The letters indicate the segments in common with Q_K and Q_S : Caldera-
- 855 Summit (a), NWC–NW (b), Kd–Pd (c), NW–ACO (d), Ks–P* (e), Ks–NWC (f), P*–NWC (g).
- 856 Segment naming includes: Mauna Loa Northwest (NW), Northwest of Caldera (NWC),
- 857 Kama'ehuakanaloa (Kd deep, Ks shallow), Pāhala (Pd deep, P* shallow). [Right] Regional Q_K
- 858 measured for the linear segments—painted corresponding to $Q_{K}(f)$ values shown in the [Left].
- 859 The colored circle legend independently ranks Q_K from highest Q (cyan) > green > yellow >
- 860 orange > lowest Q (red). NOTE that Figures 7 and 8 are independently scaled and color-coded.
- 861

863

Figure 8. [Left] Q_S transect maps (Figures 2–6) are subdivided into a hierarchy of segmented Q_S measurements The letters indicate the segments in common with Q_K and Q_S following the nomenclature of Figure 7. [Right] Regional Q_S measured for the linear segments—painted corresponding to $Q_S(f)$ values shown in the [Left]. The colored circle legend independently ranks Q_S from highest Q (cyan) > green > yellow > orange > lowest Q (red). NOTE that Figures 7 and 8 are independently scaled and color-coded.

Figure 9. The effect upon O_{S} for a fixed activation energy E^{*} , and the temperature and pressure 874 range for earthquake hypocenters. [Left] The 46 km deep Kama'ehuakanaloa event is compared 875 876 with two shallow events at 11 km. These three spectra have nearly identical Q_P and thereby common source characteristics. The range of E^* is 360–375 kJ/mol. The fit to the deep 877

Kama'ehuakanaloa earthquake diverges above about 15 Hz, with Q_S decreasing—suggesting a

878 different attenuation mechanism becomes active, producing a smaller Qs. [Right] The 12 Pāhala 879

deep events (>30 km) have a mean depth of 33±1.3 km, and are stacked and compared with the 880

Pāhala* shallow event (M_L 4.9, 8.8 km). In this case the Q_S trend is matched by an E* between 881

882 240 and 260.

883

- attenuation. The current study from NW Hawai'i to ACO is shown in red. The path segment
- from Kahului, Maui to ACO (Butler 2020) is plotted in dark violet, with a linear trend where dQ/d $f \sim 32$. The error bars show median absolute deviations (50th percentile) from the median.
- The Q_K green trend comes from the Butler et al. (1987) study near Wake Island—and has been
- $\frac{1}{100}$ abridged to the frequency range of the Kīlauea and Mauna Loa low frequency observations.
- From about 15–55 Hz the NW–ACO (d, Figure 7 [Left]) curve for Q_K flattens to ~2000, where
- the break in slope may reflect a change in the underlying O_K mechanism. The Wake Island data
- 895 extends to ~20 Hz and Q_K ~1000.
- 896

.

900 Figure 11. O_K versus frequency for different melt fraction values $\beta = 0.1\%$ (green), 1.0% (blue), and 10% (red) and Clausius-Clapeyron slope value $\alpha = 5$ MPa/K°. Shaded regions show 901 902 Q_K values for S₀ = 0.5 mm, 5.0 mm, and 50.0 mm, where S₀ is the cell model for spherical melt inclusions in partially melted rocks. Between 1 and 100 Hz, the Q_K from Figure 7 are plotted in 903 904 log-log format. For Q_K from the low attenuation transects (e, f, g), the large Q_K fall within the 905 cell size S₀ = 50.0 mm with melt fractions of β = 1.0% to 10%. Note that although the transect 906 (d) fits with (e, f, g), an alternate explanation due to vesicular basalts has already been proffered. 907 For Q_K from the high attenuation transects (a, b, c), the small Q_K fall within the cell size S₀ = 5.0 908 mm with melt fractions of $\beta = 0.1\%$ to 10%. Figure adapted with permission from Lyakhovsky 909 et al. (2021).

911 912	Supplement Appendix A.
913	
914	Seismic bulk and shear attenuation along a transect from Kama'ehuakanaloa volcano
915	through Mauna Loa to the Aloha Cabled Observatory:
916	Implications for the distribution of partial melt
917	
918	Rhett Butler ¹
919	¹ Hawai'i Institute for Geophysics and Planetology, School of Ocean and Earth Science and
920	Technology, University of Hawai'i at Mānoa, 1680 East-West Road, POST 602, Honolulu, HI
921	96822.
922	
923	
924	Supplement Appendix A comprises:
925	Earthquake Data Observed at Aloha Cabled Observatory (ACO)
926	Tables A1 and A2
927	Figure A1
928	Earthquake source spectrum
929	Text
930	Figures A2–A4
931	Path <i>Q</i> segmentation
932	Text
933	Figures A5–A6
934	

935 Earthquake Data Observed at Aloha Cabled Observatory (ACO)

936 **Table A1. Earthquake dataset**

origin_time	latitude	longitude	depth	mag	km2ACO
2011-11-20T20:17:20.396Z	19.55	-155.623	10.2	4	432.2
2014-10-13T04:43:51.187Z	19.149	-155.588	3.2	4	471.5
2015-05-09T12:18:48.413Z	19.144	-155.583	2	4.5	472.3
2016-09-06T14:25:57.338Z	19.451	-155.598	0.8	4.1	442.7
2018-05-05T00:37:10.192Z	19.181	-155.406	8.8	4.9	478.9
2018-10-14T11:39:52.210Z	18.872	-155.234	11	3.87	517.6
2020-05-11T21:59:03.110Z	18.877	-155.22	11	3.94	517.9
2021-12-25T06:59:11.330Z	18.856	-155.192	10.9	3.92	521.4
2023-03-27T04:39:16.340Z	18.816	-155.16	7.8	4.12	527
2019-04-14T03:09:02.680Z	19.742	-155.791	13.3	5.3	404.6
2019-08-22T14:33:30.360Z	18.838	-155.237	46	4.18	520.5
2020-08-01T20:03:07.560Z	19.24	-155.413	31.7	4.2	473.1
2020-12-04T17:44:24.580Z	19.513	-155.663	4.7	4.1	433.3
2021-04-03T21:15:22.400Z	19.238	-155.514	7.9	4.3	467.4
2021-06-03T04:44:32.360Z	18.865	-155.236	10.8	4.02	518.1
2021-06-18T02:32:04.670Z	19.23	-155.402	32.7	4.5	474.6
2021-08-18T12:01:58.880Z	19.214	-155.393	32.9	4.1	476.6
2021-10-06T06:36:56.410Z	19.226	-155.398	32.7	4.6	475.3
2021-12-24T11:31:34.390Z	18.87	-155.234	11.9	4.87	517.7
2022-01-04T00:13:26.770Z	19.216	-155.4	33.5	4.3	476
2022-01-31T11:54:32.360Z	19.219	-155.396	32.8	4	476
2022-07-27T03:46:04.880Z	19.226	-155.392	34	4.3	475.5
2022-07-27T04:28:14.180Z	18.85	-155.236	10.6	4.62	519.5
2022-08-23T05:11:30.110Z	19.201	-155.391	31.8	4	478
2022-09-06T00:23:12.610Z	19.253	-155.369	32.9	4	474.5
2022-09-08T12:04:03.510Z	19.239	-155.392	32.9	4.2	474.4
2022-11-28T08:56:25.740Z	19.471	-155.601	-1.2	4.2	440.7

2023-05-08T09:58:58.600Z	19.24	-155.374	32	3.8	475.4
2022-06-19T21:15:18.230Z	19.241	-155.399	33.1	3.9	473.8
2021-09-12T11:45:06.430Z	19.221	-155.417	36.2	3.8	474.6

939 Table A2. Earthquake mean $\pm \sigma$ for depth, *P* and *S* apparent group velocities

Earthquake locations	depth. km	± km	Vp. km/s	± km/s	Vs. km/s	± km/s
Kama'ehuakanaloa	10.6	13	77	0.3	4.6	0.2
Kama'ehuakanaloa deen	46.0	1.5	7.9	0.5	4.6	0.2
Pābala	5 5	3 1	7.9 7 7	0.3	4.0	0.1
Tallala Dābala*	00	5.4	7.7	0.5	4.4	0.1
	0.0	1.2	7.5	0.02	4.5	0.04
Panala deep	33.2	1.3	7.9	0.03	4.6	0.04
Mauna Loa NW near caldera	7.5	3.9	7.7	0.1	4.5	0.1
Mauna Loa caldera	-0.2	1.4	7.5	0.2	4.3	0.02
NW (northwest)	13.3		7.9		4.5	

943

944 Figure A1. ACO spectrograms (frequency-time plots) are shown for six events in this study-945 left Pāhala, center Kama'ehuakanaloa, and right Mauna Loa. The Pāhala* earthquake from Figure 1 is plotted in the upper left. The legend is at the base. The color bars show signal power. 946 947 The left portion of each spectrogram shows the pre-event noise level. The deep blue field shows the frequency-time area where signal-to-noise (SNR) < 4. The earthquakes show only data 948 949 meeting the SNR > 4 criterion. It is significant that shear wave energy from one of the Pāhala 950 earthquakes at 474 km distance from ACO expressed frequencies up to 91 Hz, implying a high 951 Os shear wave pathway through, beneath Mauna Loa. From within Mauna Loa Caldera 952 frequencies are limited up to 16 Hz. At distances of 400-550 km, high signal-to-noise (SNR > 953 4) waveform data are available for the differing volcano distances, depths, M_L and peak 954 frequencies.

955

956 Earthquake source spectrum

957 Since our effective *Q* determinations are only as good as the spectral model employed, I took

958 the effort to confirm that the earthquakes *conformed* to the expectations of the source model in

959 deriving Q. Figure A2 plots two examples of spectral measurements fits between the source

model and data for two deep Pāhala earthquakes. The Pāhala event in Figure A2 [A,B] *conforms* to the ω^{-2} source spectrum for *P*- and *S*-waves. However, the Pāhala earthquake *S*-wave shown in Figure A2 [D] is *non-conforming*, as the data exceed the source model near 1 Hz. Figure A3 compares *conforming* and *non-conforming* spectra for deep events near Pāhala. Figure A4 plots the location of off-shore, deep *non-conforming* earthquakes

In reviewing the source spectra trend note that an ω^{-4} trend (dashed cyan) first seen by Butler (2018) for high-frequency events north of Moloka'i is again observed in Figure A2 for both *P*and *S*-waves. An apparent corner of the ω^{-4} at 1.5 Hz is shown for illustration only. The reader is referred to Butler (2018) for implications and discussion.

Figure A2. The elements of the *Q* measurement technique are shown for two Pāhala deep
earthquakes. [B] The corner frequency (0.4 Hz) is measured at the extrapolated intersection of
the amplitude spectral slope with the low frequency peak value (e.g., Hanks and Thatcher, 1972).

- 973 The ω^{-2} source model (dashed green) exceeds the data (blue) over a frequency band (red), whose
- 974 offset is related to Q. Note in [D] that the source ω^{-2} amplitude spectrum (dashed green) is
- smaller than the data (blue), and thereby does not *conform* with the source model. In reviewing
- 976 the earthquake spectra of all events analyzed, only some of the deep *S* wave data were observed
- 977 to be *non-conforming*. All shallow earthquake data were *conforming*.
- 978 Hanks, T.C. & Thatcher, W., 1972. A graphical representation of seismic source parameters, J.
- 979 Geophys. Res., 77(23), 4393–4405.
- 980

983 Figure A3 [B] Several *non-conforming* deep earthquakes near Pāhala show amplitude spectra

984 (*Axx*) that exceed the source model amplitude fall-off rate (ω^{-2} shown as magenta) appropriate 985 for the measured corner frequency (green triangles). [A] Selected plots of amplitude spectra for

- Pāhala deep earthquakes which *conform* to the ω^{-2} source model. Only data (blue 'x') with SNR
- 987 > 4 are plotted on along the *Axx* traces (black). The downward offset of *non-conforming* corner
- 988 frequencies with respect to *conforming* earthquakes may represent theoretical earthquake source
- 989 effects discussed in Kaneko and Shearer (2014, 2015). Note that of the 16 deep Pāhala events,
- 990 only 4 showed *non-conforming S* wave spectra, whereas *all P* wave spectra and *all* shallow
- 991 earthquakes in the data set were found to be *conforming*.
- 992
- Kaneko, Y., and P. M. Shearer (2014). Seismic source spectra and estimated stress drop derived
 from cohesive-zone models of circular subshear rupture, Geophys. J. Int. 197, no. 2, 1002–
 1015.
- Kaneko, Y., and P. M. Shearer (2015). Variability of seismic source spectra, estimated stress
 drop, and radiated energy, derived from cohesive-zone models of symmetrical and
- 997 drop, and radiated energy, derived from conestve-zone models of symmetrical and
- asymmetrical circular and elliptical ruptures, J. Geophys. Res. 120, no. 2, 1053–1079.
- 999

1001

1002	Figure A4. Map	of Hawai'i island	showing earthquake	locations: (red)	events >30 km depth;
------	----------------	-------------------	--------------------	------------------	------------------------

1003 (yellow) events <12 km; (white) supplemental, off-shore deep earthquake sources. Symbols with

1004 a \star indicate earthquake data that *do not conform* with the ω^{-2} Brune (1970) source model. Only

1005 one of the four deep Pāhala *non-conforming* earthquakes are visible in the cluster of red events.

1006 Orange lines show propagation paths to ACO (see Figure 1).

1007

Brune, J. N. (1970). Tectonic stress and the spectra of seismic shear waves from earthquakes, J.
Geophys. Res. 75, no. 26, 4997–5009.

1010

1011

1013 Path *Q* segmentation

- 1014 When (1) path Q's are similar, and (2) when their differences are less than the spectral noise,
- 1015 the path segmentation may be derived.
- 1016 Consider the pathway Kama'ehuakanaloa \rightarrow Caldera:

$$\frac{\Delta t_{Kama \to ACO} - \Delta t_{Caldera \to ACO}}{Q_{Kama \to Caldera}} = \frac{\Delta t_{Kama \to ACO}}{Q_{Kama \to ACO}} - \frac{\Delta t_{Caldera \to ACO}}{Q_{Caldera \to ACO}}$$
(a1)

1017

Let
$$Q_{Kama \to ACO} \approx Q_{Caldera \to ACO} \approx Q_0 \approx \frac{Q_{Kama \to ACO} + Q_{Caldera \to ACO}}{2}$$
 (a2)

1018 Then,

$$\frac{\Delta t_{Kama \to ACO} - \Delta t_{Caldera \to ACO}}{Q_{Kama \to Caldera}} \approx \frac{\Delta t_{Kama \to ACO}}{Q_0} - \frac{\Delta t_{Caldera \to ACO}}{Q_0}$$
(a3)

1019

$$\frac{\Delta t_{Kama \to ACO} - \Delta t_{Caldera \to ACO}}{Q_{Kama \to Caldera}} \approx \frac{\Delta t_{Kama \to ACO} - \Delta t_{Caldera \to ACO}}{Q_0}$$
(a4)

$$Q_{Kama \to Caldera} \approx Q_0 \tag{a5}$$

1024

1026

1027 Figure A5. Adapted from Figure 3 showing only the deep paths to present a clear comparison.

1028 Although the comparisons are *not* perfect, there is a clear tendency–surprisingly–for peaks and

1029 troughs to align. This suggests that the deep propagation paths to NW from Pāhala and

1030 Kama'ehuakanaloa are similar. The simple cartoon illustrates [C] the proximal propagation.

Figure A6. The Mauna Loa transect maps (Figures 2–6) are subdivided into a hierarchy of segmented Q measurements. Q_K is the left panel, Q_S is right. The letters indicate the segments in common with Q_K and Q_S following the nomenclature of Figure 7. Q traces are colored for visual clarity, and are not necessarily consistent between the left and right panels.

- 1038
- 1039
- 1040

Figure 12. [Left] Regional Q_K variations are shown and annotated from Figure 7. [Right] Relocated seismicity in 1986–2018 are shown from the study of Matoza et al., (2020), where

1045 rectangular regions are included from their presentation—noted by letters within squares \Box .

- 1046 Only region 'c' overlaps significantly with the Q_K data between the Mauna Loa and
- 1047 Kama'ehuakanaloa calderas, roughly centered on Pāhala. Seismicity is projected onto vertical,
- 1048 length-wise 'c' and width-wise 'c' cross-sections (far right). Note in 'c' the dashed lines plotting
- 1049 15 and 30 km depths, which adjoin the shallow and deeper seismicity—between these lines are 1050 significantly fewer earthquakes. Figure 3[D] shows the propagation paths transecting this zone.
- 1050 Significantly lewer earliquakes. Figure 5[D] shows the propagation paths transecting this zone. 1051 NOTE that Figures 7 (Q_K) and 8 (Q_S) are independently scaled and color coded. Figure adapted
- 1051 from Matoza et al. (2020).
- 1053